Intusoft Vacuum Tube Models Date: 2/98 Copyright © Intusoft 1998 Tel (310) 833-0710 Fax (310) 833-9658 e-mail: info@intusoft.com World Wide Web site: http://www.intusoft.com These models are part of the ICAP/4Windows Deluxe package which currently includes over 10,000 models and hundreds of different part types. With regard to the number of part types, it is the largest library available from ANY SPICE vendor!! ************* * Tube Subcircuit Application Notes * For more info see the Intusoft Newsletter #18 August 1990, Newsletter #34, Feb. 1994 * and Newsletter #35 April 1994. * ************* SPICE Simulation Models These SPICE simulation models may be used and distributed freely, provided they are not altered in any way, resold, or included in any other package for resale. In addition, the Intusoft copyright notice MUST be maintained and included with any model distribution. As a service to our customers, we provide a free modeling service. If you are interested in obtaining additional models, please contact Intusoft technical support. ICAP/4 Windows Demonstration Software The demonstration version of ICAP/4 Windows including IsSpice4 may be downloaded from our Web site at no charge. Also available for download are additional models, product and ordering information, technical articles, and Intusoft Newsletters. SpiceMod Modeling Software SpiceMod is a CAE program that is used to create SPICE models from data sheet values. SPICEMOD is particularly useful in the circuit design phase because it allows the designer to create SPICE models based on electrical specifications before an actual device is selected. SpiceMod may be used to create models for diodes, Zener diodes, BJTs, power BJTs, Darlington BJTs, JFETs, MOSFETs, power MOSFETs, IGBTs, SCRs, and TRIACS. ********** Macromodels, simulation models, or other models provided by Intusoft, directly or indirectly, are not warranted by Intusoft as fully representing all of the specifications and operating characteristics of the semiconductor product to which the model relates. Moreover, these models are furnished on an "as is" basis without support or warranty of any kind, either expressed or implied, regarding the use thereof and Intusoft specifically disclaims all implied warranties of merchantability and fitness of the models for any purpose. Intusoft does not assume any liability arising out of the application or use of the models including infringement of patents and copyrights nor does Intusoft convey any license under its patents and copyrights or the rights of others. Intusoft reserves the right to make changes without notice to any model. Although the use of macromodels can be a useful tool in evaluating device performance in various applications, they cannot model exact device performance under all conditions, nor are they intended to replace breadboarding for final verification. ************************** * * Some Tube Models (TRIO1/PENT1/HEAT1) created by * EXCEM For the Intusoft Newsletter * 12, Chemin des Hauts de Clairefontaine * 78580 MAULE * FRANCE * tel 33 (1) 34 75 13 65 * fax 33 (1) 34 75 13 66 * * Advertising corner: EXCEM provides worldwide services in the fields of * Electronics R&D, with focus on RF, theoretical and practical EMC, * electronic simulations and DSP. We also represent INTUSOFT in France. * * Among other things we manufacture a high-voltage wide-band tube * amplifier for driving high impedance loads (e.g. short E-field antenna). * ******************* *SRC=12AU7A;12AU7A;Tubes;Complex;250V 3W Triode *SYM=TRIODE1 .SUBCKT 12AU7A 1 2 3 4 5 * Anode Grid Cathode F F' * COPYRIGHT EXCEM, 1993 * X1 1 2 3 10 TRIO1 {SFS=0.7 VBIG=-0.9 VBIA=-1.3 MU=17 RMU=0.5 VMU=-20 SFMU=1.6 + K=827E-6 RK=0.08 VK=-20 SFK=1.6 SIGMAG=0.05 ALPHAG=5.2 SFG=3.5} * X2 4 5 10 HEAT1 {INOM=0.15 VNOM=6.3 LAMBDA=1 RCOOL=3 TCTE=10 TNOM=1150 INIT=100 + W=2.045 ISAT=0.099} * C2 1 2 1.5P C3 3 1 0.5P C4 2 3 1.6P C5 3 4 4P C6 3 5 4P * *INCLUDE VACUUMNL.LIB .ENDS ******************* *SRC=12AU7A2;12AU7A2;Tubes;Complex;Triode, No Heater *SYM=TRIODE1 .SUBCKT 12AU7A2 1 2 3 4 5 * Anode Grid Cathode F F' * COPYRIGHT EXCEM, 1993 Triode without Heater Model * X1 1 2 3 10 TRIO1 {SFS=0.7 VBIG=-0.9 VBIA=-1.3 MU=17 RMU=0.5 VMU=-20 SFMU=1.6 + K=827E-6 RK=0.08 VK=-20 SFK=1.6 SIGMAG=0.05 ALPHAG=5.2 SFG=3.5} * RF 4 5 42 VH 10 0 99m * C2 1 2 1.5P C3 3 1 0.5P C4 2 3 1.6P C5 3 4 4P C6 3 5 4P * *INCLUDE VACUUMNL.LIB .ENDS ******************* *SRC=EL9000;EL9000;Tubes;Complex;Pentode *SYM=PENTODE1 .SUBCKT EL9000 1 2 3 4 5 6 * Anode Grid2 Grid1 Cathode F F' * COPYRIGHT EXCEM, 1993 * X1 1 2 3 4 10 PENT1 {SFS=0.7 VBIG=-0.9 VBIA=-1.3 MUG2=17 MUA=15000 RMU=0.5 + VMU=-20 SFMU=1.6 K=5.4E-3 RK=0.08 VK=-20 SFK=1.6 SIGMA1=0.05 + ALPHA1=5.2 SFG1=3.5 SIGMA2=0.12 ALPHA2=0.06 SFG2=2.3 VCCR=0.58 SFVC=0.33} * X2 5 6 10 HEAT1 {INOM=0.15 VNOM=6.3 LAMBDA=1 RCOOL=3 TCTE=10 TNOM=1150 INIT=100 + W=2.045 ISAT=0.690} * C2 1 2 1.5P C3 3 1 0.5P C4 2 3 1.6P C5 3 4 4P C6 3 5 4P * *INCLUDE VACUUMNL.LIB .ENDS ******************* *SRC=EL9000_2;EL9000_2;Tubes;Complex;Pentode, No Heater *SYM=PENTODE1 .SUBCKT EL9000_2 1 2 3 4 5 6 * Anode Grid2 Grid1 Cathode F F' * COPYRIGHT EXCEM, 1993 * X1 1 2 3 4 10 PENT1 {SFS=0.7 VBIG=-0.9 VBIA=-1.3 MUG2=17 MUA=15000 RMU=0.5 + VMU=-20 SFMU=1.6 K=5.4E-3 RK=0.08 VK=-20 SFK=1.6 SIGMA1=0.05 + ALPHA1=5.2 SFG1=3.5 SIGMA2=0.12 ALPHA2=0.06 SFG2=2.3 VCCR=0.58 SFVC=0.33} * RF 5 6 42 VH 10 0 99m * C2 1 2 1.5P C3 3 1 0.5P C4 2 3 1.6P C5 3 4 4P C6 3 5 4P * *INCLUDE VACUUMNL.LIB .ENDS ******************* *SRC=TRIODE;TRIO1;Tubes;Generic;Complex Triode *SYM=TRIO1 .SUBCKT TRIO1 A G C ISAT {SFS=??? VBIG=??? VBIA=??? MU=??? RMU=??? VMU=??? + SFMU=??? K=??? RK=??? VK=??? SFK=??? SIGMAG=??? ALPHAG=??? SFG=???} * * COPYRIGHT EXCEM, 1993 * * Forward and reverse conditions are treated in this triode model * as well as saturation. * The model describes only the static bahaviour of the triode, and * neglects secondary emission (that would occur at high VG and low VA). * * THE TRIODE'S 14 PARAMETERS ARE: * * SFS shape factor of the saturation law. * VBIG contact potential of the grid * (the voltage above which grid may current start to flow). * VBIA contact potential of the anode. * MU amplification factor at slighly negative grid voltage. * RMU reduction factor for MU at very negative grid voltage. * VMU grid voltage for mid-range MU (negative). * SFMU shape factor for MU reduction law. * K perveance at slightly negative grid voltage. * RK perveance reduction factor at very negative grid voltage. * VK grid voltage for mid-range perveance (negative). * SFK shape factor for perveance reduction law. * SIGMAG effective cross-section of the grid relative to the anode. * ALPHAG grid current amplification factor. * SFG shape factor of the grid current law. * B1 15 0 V = V(G) - V(C) < -1P ? + {K} * (1+{RK} * ((V(G) - V(C)) / {VK})^{SFK}) / (1 + ((V(G) - V(C)) / {VK})^{SFK}) : {K} * V(15) is the effective perveance B2 16 0 V = V(G) - V(C) < -1P ? {MU} * (1 + {RMU} * ((V(G) - V(C)) / {VMU})^{SFMU}) / + (1 + ((V(G) - V(C)) / {VMU})^{SFMU}) : {MU} * V(16) is the effective MU B4 9 0 V = V(G) - V(C) - {VBIG} + (V(A) - V(C) - {VBIA}) / (V(16) + 1U) B6 10 0 V = V(9) > 0 ? V(15) * V(9)^1.5 / (V(ISAT) + 1P) : 0 B7 12 0 V = V(10) < {SFS} ? V(10) * (V(ISAT) + 1P) : + (V(ISAT) + 1P) * ({SFS} + (V(10) - {SFS}) * {1-SFS} / ({1 - 2 * SFS} + V(10))) * B7 contains an arbitrary saturation law modeled by the shape factor SFS * to match the available data. SFS should be between 0 and 1. The * lower SFS the sloppier the saturation law. * B8 14 0 V = V(A) - V(C) > {VBIA + 0.1M} ? (V(A) - V(C) - {VBIA}) / {ALPHAG} : 2P B9 28 0 V = V(G) - V(C) > {VBIG + 0.1M} ? V(14) > 1P ? + ((V(G) - V(C) - {VBIG} + {SIGMAG^(1/SFG)} * V(14)) / (V(G) - V(C) - {VBIG} + V(14)))^{SFG} : 0 B10 8 0 V = V(G) - V(C) < 0 ? V(28) * (({VBIG+10U} + V(C) - V(G)) / {VBIG+10U}) : V(28) B15 G C I = V(8) * V(12) B17 A C I = (1 - V(8)) * V(12) .ENDS ******************* *SRC=PENTODE;PENT1;Tubes;Generic;Complex Pentode *SYM=PENT1 .SUBCKT PENT1 A G2 G1 C ISAT {SFS=??? VBIG=??? VBIA=??? MUG2=??? MUA=??? RMU=??? VMU=??? SFMU=??? + K=??? RK=??? VK=??? SFK=??? SIGMA1=??? ALPHA1=??? SFG1=??? SIGMA2=??? ALPHA2=??? SFG2=??? VCCR=??? SFVC=???} * * COPYRIGHT EXCEM, 1993 * * Forward and reverse conditions are treated in this model * as well as saturation. * The model describes only the static bahaviour of the pentode, and * neglects secondary emission. It is assumed that G2 is always very * positive with respect to the cathode. * * * THE PENTODE'S 20 PARAMETERS ARE: * * SFS shape factor of the saturation law. * VBIG contact potential of the grid G1 * (the voltage above which grid current may start to flow). * VBIA contact potential of the anode. * MUG2 amplification factor for G2 at slighly negative G1 voltage. * MUA amplification factor for A at slightly negative G1 voltage. * RMU reduction factor for MU at very negative G1 voltage. * VMU grid voltage for mid-range MU (negative). * SFMU shape factor for MU reduction law. * K perveance at slightly negative G1 voltage. * RK perveance reduction factor at very negative G1 voltage. * VK grid voltage for mid-range perveance (negative). * SFK shape factor for perveance reduction law. * SIGMA1 effective cross-section of G1 relative to the anode and G2. * ALPHA1 grid G1 current amplification factor. * SFG1 shape factor of the grid G1 current law. * SIGMA2 effective cross-section of G2 relative to the anode. * ALPHA2 grid G2 current amplification factor. * SFG2 shape factor of the grid G2 current law. * VCCR virtual cathode current ratio. * SFVC shape factor of the virtual cathode current law. * * B1 15 0 V = V(G1) - V(C) < -1U ? {K} * (1 + {RK} * + ((V(G1) - V(C)) / {VK})^{SFK}) / (1 + ((V(G1) - V(C)) / {VK})^{SFK}) : {K} * V(15) is the effective perveance B2 16 0 V = V(G1) - V(C) < -1U ? (1 + {RMU} * ((V(G1) - V(C)) / {VMU})^{SFMU}) / + (1 + ((V(G1) - V(C)) / {VMU})^{SFMU}) : 1 * V(16) is the factor used to establish both effective MU coefficients E1 17 0 16 0 {MUG2} E2 18 0 16 0 {MUA} * V(17) is the effective MUG2 and V(18) is the effective MUA B4 9 0 V = V(G1) - V(C) - {VBIG} + (V(A) - V(C) - {VBIA}) / (V(18) + 1U) + + (V(G2) - V(C)) / (V(17) + 1U) B6 10 0 V = V(9) > 1P ? V(15) * V(9)^1.5 / (V(ISAT) + 1P) : 0 B7 12 0 V = V(10) < {SFS} ? V(10) * (V(ISAT) + 1P) : + (V(ISAT) + 1P) * ({SFS} + (V(10) - {SFS}) * {1-SFS} / ({1 - 2 * SFS} + V(10))) * B7 contains an arbitrary saturation law modeled by the shape factor SFS * to match the available (?) data. SFS should be between 0 and 1. The * lower SFS the sloppier the saturation law. * B8 14 0 V = V(G2) - V(C) + {MUG2 / MUA} * (V(A) - V(C)) > 0.1M ? + V(G2) - V(C) + {MUG2 / MUA} * (V(A) - V(C)) / {ALPHA1} : 0.2M B9 28 0 V = V(G1) - V(C) > {VBIG + 10U} ? V(14) > 0.1M ? + ((V(G1) - V(C) - {VBIG} + {SIGMA1^(1/SFG1)} * + V(14)) / (V(G1) - V(C) - {VBIG} + V(14)))^{SFG1} : 0 * B10 8 0 V = V(G1) - V(C) < 0 ? V(28) * (({VBIG+10U} + V(C) - V(G1)) / {VBIG+10U}) : V(28) * B11 21 0 V = V(A) - V(C) > {VBIA + 0.1M} ? (V(A) - V(C) - {VBIA}) / {ALPHA2} : 0.2M B12 32 0 V = V(G2) - V(C) > {VBIG+10U} ? V(21) > 0.1M ? + ((V(G2) - V(C) -{VBIG} + {SIGMA2^(1 / SFG2)} * + V(21)) / (V(G2) - V(C) -{VBIG} + V(21)))^{SFG2} : 0 * B13 22 0 V = V(G2) - V(C) < 0 ? V(32) * (({VBIG+10U} + V(C) - V(G2)) / {VBIG+10U}) : V(32) * B14 23 0 V = V(22) - {SIGMA2} > 1P ? V(12) * (1-{VCCR} * (V(22) - {SIGMA2})^{SFVC}) : V(12) * When the virtual cathode is present, this factor describes the * decrease in cathode current (see Terman p. 192). * B15 G1 C I = V(8) * V(23) R15 G1 C 100MEG B16 G2 C I = (1 - V(8)) * V(22) * V(23) R16 G2 C 100MEG B17 A C I = (1 - V(8)) * (1 - V(22)) * V(23) R17 A C 100MEG * .ENDS ******************* *SRC=HEATER;HEAT1;Tubes;Generic;Heater model *SYM=HEAT1 .SUBCKT HEAT1 F F' ISAT {INOM=??? VNOM=??? LAMBDA=??? RCOOL=??? TCTE=??? TNOM=??? INIT=??? W=??? ISAT=???} * * COPYRIGHT EXCEM, 1993 * * This model for the heater gives a voltage ISAT * that is an analog for the saturation current of the cathode. * * * THE HEATER'S 9 PARAMETERS ARE: * * INOM the nominal heater current, at nominal voltage. * VNOM the nominal heater voltage (causing nominal temperature) * LAMBDA temperature coefficient of the heater resistance. * (normalized to the nominal temperature); * RCOOL resistance of the cold heater. * TCTE the time constant for the heater temperature. * TNOM the nominal heater temperature in K. * INIT initial heater temperature in % of TNOM. * W work function of the heater, in eV. * ISAT the saturation current at nominal heater voltage. * V1 F 4 0 R1 5 4 0.01 * Above the Debye temperature, the resistivity is nearly linear * with respect to temperature, see Ashcroft & Mermin p. 525 and p 461. B1 5 F' V = V(7) > 0 ? I(V1) * ({VNOM / INOM - RCOOL} * (1 + {LAMBDA} * (V(7) - 1)) + {RCOOL}) + : I(V1) * {VNOM / INOM} * B1 delivers the power recieved by the heater B2 6 0 V = (V(F) - V(F')) * I(V1) > 0 ? (V(F) - V(F')) * I(V1) / {VNOM * INOM} : 1 R2 6 7 1 C1 7 0 {TCTE} IC = {INIT/100} * Only conductive dissipation is considered. Therfore, V(7) is a normalized temperature. * B4 contains the Richardson-Duschman law, with an exponential containing * B = W/k, the Bolzmann's constant is 0.8617e-4 eV/K * for Tungsten (see Ashcroft & Mermin p. 364) and W = 4.5 eV. It may * be 2.2 times lower for an oxide-coated cathode (see Terman p. 173). * B3 delivers the saturation current. E1 13 0 7 0 {TNOM} B3 ISAT 0 V = V(13) > 0 ? + {ISAT} * V(7)^2 * EXPL(({W/0.8417E-4} * (1 / {TNOM} - 1 / (V(13) + 1))),5) : {ISAT} * The 1 Kelvin added to V(13) avoids convergence problems. .ENDS ****************** *SRC=12AX7A;T12AX7A;Tubes;Simple;250V 1W Triode *SYM=TRIODE .SUBCKT T12AX7A 1 3 4 * Grid Plate Cathode * One Half - High Mu Twin Triode, Similar to 12AX7-A G1 6 4 POLY(2) 1 4 3 4 + 0 1.1041M 11.041U 79.300U 1.5860U 7.9300N Q1 3 4 6 NPN .MODEL NPN NPN D1 6 4 DIODE .MODEL DIODE D CGP 1 3 1.7000P CIN 1 4 1.6000P COUT 3 4 460.00F R2 3 4 100MEG .ENDS **********